Evaluation Basis

$$ \gdef\vec#1{\bm{#1}} \gdef\delim#1#2#3{\mathopen{}\mathclose{\left#1 #2 \right#3}} \gdef\p#1{\delim({#1})} \gdef\Mod#1{\delim[{#1}]} \gdef\F{\mathbb{F}} \gdef\G{\mathbb{G}} \gdef\g{\mathrm{g}} \gdef\NTT{\mathsf{NTT}} \gdef\MSM{\mathsf{MSM}} \gdef\Mul{\mathsf{Mul}} \gdef\Mulc{\mathsf{Mul}^{\mathsf{C}}} \gdef\Add{\mathsf{Add}} \gdef\D#1{\mathrm{\partial}_{#1}} \gdef\Z{\mathrm{Z}} \gdef\T{\mathsf{T}} \gdef\I{\mathrm{I}} \gdef\J{\mathrm{J}} \gdef\ω{\mathrm{ω}} \gdef\diag{\operatorname{diag}} \gdef\set#1{\delim\{{#1}\}} $$

Given a finite field $\F_q$ we can construct a polynomial ring $\F[X]$.

Fermat's little theorem: $X^q-X$ has as roots all of

https://en.wikipedia.org/wiki/Frobenius_endomorphism

If $\F$ is a prime field or order $p$ then $\Z_{\F}(X) = X^p - X$ has as roots all elements of $\F$.

https://en.wikipedia.org/wiki/Fermat%27s_little_theorem

$\Z_{\F}'(X) = p⋅X^{p-1} - 1 = -1$

$$ \delim\vert{\F_q[X]_{<n}}\vert = q^n $$

$$ \F_q[X]_{<n} \sim \F_q^n $$

$$ \delim\vert{\F_q → \F_q}\vert = q^q $$

Basis for $\F_q[X]$.

$$ E_a(X) = \frac{\Z_{\F \setminus \set{a}}(X)}{\Z_{\F}'(a)} = -\frac{X^p - X}{X - a} $$

Idea. Since $X^{q-1}$ is $0$ for $X=0$ and $1$ otherwise we have $E_0(X) = 1 - X^{q-1}$. Furthermore we have $E_a(X) = E_0(X-a)$. This gives

$$ \begin{aligned} 1 - \p{X-a}^{q-1} &= -\frac{X^q - X}{X - a} \\ \p{X-a} - \p{X-a}^q &= -\p{X^q - X} \\ X-a - \p{X-a}^q &= -X^q + X \\ \p{X-a}^q &= X^q - a \\ \end{aligned} $$

Which is a basic consequence of the Frobenius endomorphism and Fermat's little theorem.

This creates a map from functions over $\F$ to $\F_q[X]_{<q}$. Given $f(x)$ the equivalent $P(X)$ is

$$ P(X) = \sum_{a∈\F} f(a) ⋅ E_a\p{X} $$

$$ \Z_{\F}(X) = X^p - X $$

So we can not distinguish between $\F_q[X]$ and $\F_q[X]/\p{X^q-X}$ by evaluations. But what about the differential operator $\D{X}$? Can it somehow shift in the $X^q$ and higher terms?

$$ \D{X} X^q = q⋅X^{q-1} $$

and since $q = 0$ in $\F_q$ this is also zero. So the differential operator also does not distinguish.

Question. How does this work in extension fields? We would already have $p = 0$ not $q = p^n$.

A derivative operator is a linear map that satisfies $\D{X}\p{a⋅b} = \D{X}\p{a}⋅b + a⋅\D{X}\p{b}$.

Question. Given that every function can be represented by a polynomial. How does the multiplicative inversion operator look?

$$ Q(X) = \frac{1}{P(X)} $$

We can start simple by $\frac 1X$:

$$ \begin{aligned} P(X) &= \sum_{a∈\F} f(a) ⋅ E_a\p{X} \\ &= - \sum_{a∈\F} \frac 1a ⋅\frac{X^p - X}{X - a} \\ \end{aligned} $$

Question. Or the applicative-inversion operator.

$$ Q(X) = P^{-1}(X) $$

Monomial basis

Given a field $\F$ and a polynomial ring $\F[X]$ over it. A $n$-term polynomials $P∈\F[X]$ can be written in monomial form

$$ P(X) = c_0 + c_1 ⋅ X + c_2 ⋅ X^2 + ⋯ + c_{n-1} ⋅ X^{n-1} $$

where $\vec c ∈ \F^n$ is the vector of coefficients. This is a basis in the linear algebra sense as we can construct a vector $\vec m ∈ \F[X]^n$ such that $P$ is the inner product $\vec c ⋅ \vec m$. Such a $\vec m$ is called a standard basis.

$$ P(X) = \begin{bmatrix} c_0 \\ c_1 \\ c_2 \\ ⋮ \\ c_{n-1} \end{bmatrix} ⋅ \begin{bmatrix} 1 \\ X \\ X^2 \\ ⋮ \\ X^{n-1} \end{bmatrix} $$

Zero polynomial

Polynomials that can be factored into a constant linear factors are called splitting.

$$ P(X) = a⋅(X - x_0)⋅(X - x_1)⋅⋯⋅(X - x_{n-1}) $$

the set $\mathcal S \subset \F$ are called roots as $P(x) = 0$ iff $x ∈ \mathcal S$. Define the zero polynomial over a set $\mathcal S$ as

$$ \Z_{\mathcal S}(X) = \prod_{x∈\mathcal X} \p{X - x} $$

this is the minimal polynomial such that

$$ \forall_{x ∈ \mathcal S}\quad \Z_{\mathcal S}(x) = 0 $$

the roots allow for some set theoretic operations (todo. generalize to multisets)

$$ \begin{aligned} \Z_{\mathcal A \cup \mathcal B}(X) &= \frac{\Z_{\mathcal A}(X)⋅\Z_{\mathcal B}(X)}{\Z_{\mathcal A ∩ \mathcal B}(X)} & \Z_{\mathcal A \setminus \mathcal B}(X) &= \frac{\Z_{\mathcal A}(X)}{\Z_{\mathcal A ∩ \mathcal B}(X)} \\ \end{aligned} $$

in particular for $x ∈ \mathcal S$:

$$ \Z_{\mathcal S \setminus \set{x}}(X) = \frac{\Z_{\mathcal S}(X)}{X - x} $$

Derivative

The derivative of $\Z_{\mathcal S}$ can be found using the product rule or the logarithmic derivative

$$ \begin{aligned} \Z_{\mathcal S}'(X) &= \sum_{x∈\mathcal S} \Z_{\mathcal S \setminus \set{x}}(X) = \sum_{x∈\mathcal S} \frac{\Z_{\mathcal S}(X)}{X - x} = \Z_{\mathcal S}(X) ⋅ \sum_{x∈\mathcal S} \frac{1}{X - x} \end{aligned} $$

The first form is suitable to evaluate on the domain $\mathcal S$, which has an elegant result:

$$ \begin{aligned} \forall_{x ∈ \mathcal S}\quad \Z_{\mathcal S}'(x) = \Z_{\mathcal S \setminus \set{x}}(x) \end{aligned} $$

Specific values

If $\mathcal S$ are the $n$-th roots of unity $\mathcal Ω_n = \set{1, ω_n, ω_n^2, …, ω_n^{n-1}}$ the zero polynomial has a sparse monomial form:

$$ \begin{aligned} \Z_{\mathcal Ω_n}(X) &= X^n - 1 &\quad \Z_{\mathcal Ω_n}'(X) &= n⋅X^{n-1} \end{aligned} $$

If $\mathcal S$ is the sequence $[0,n) = \set{0,1,2,…,n-1}$ the zero polynomial is the falling factorial. For $(-n, 0]$ it is the rising factorial:

$$ \begin{aligned} \Z_{[0,n)}(X) &= X^{\underline{n}} &\quad \Z_{(-n,0]}(X) &= X^{\overline{n}} & \end{aligned} $$

These are related to the factorial and gamma function

$$ \begin{aligned} \Z_{[0,n)}(X) &= \frac{\Gamma\p{X + 1}}{\Gamma\p{X - n + 1}} &\quad \Z_{(-n,0]}(X) &= \frac{\Gamma\p{X + n}}{\Gamma\p{X}} \end{aligned} $$

In general they have lots of uses in combinatorics and umbral calculus (todo explore)

Evaluation basis

Given an evaluation domain $\vec x ∈ \F^n$ containing $n$ distinct elements, we can also represent $P$ uniquely by its evaluations $\vec y ∈ \F^n$ on this domain $y_i = P(x_i)$.

We can again construct a standard basis $\vec L ∈ \F[X]^n$, in this case called a Lagrange basis

$$ L_i(X) = \frac{\Z_{\vec x \setminus \set{x_i}}(X)}{\Z_{\vec x \setminus \set{x_i}}(x_i)} = \frac{\Z_{\vec x \setminus \set{x_i}}(X)}{\Z_{\vec x}'(x_i)} $$

these satisfy $L_i(x_j) = δ_{ij}$.

If we define normalization constants $l_i = \p{Z_{\vec x \setminus \set{x_i}}(x_i)}^{-1}$ then we get the barycentric form:

$$ L_i(X) = \Z_{\vec x}(X)⋅\frac{l_i}{X - x_i} $$

this form is useful for evaluating the basis in $x∉\vec x$ as $Z_{\vec x}(x)$ can be computed once. The fraction is ill-defined on $\vec x$ though, so this form is more appropriate

$$ L_i(X) = l_i⋅\frac{\Z_{\vec x}(X)}{X - x_i} $$

Derivative

Say we have $P(X) ∈ \F[X]$ represented in evaluations basis on domain $\vec x$ as $\vec p$ and we wish to know its derivative $P'(X)$ in the same basis.

$$ \begin{aligned} P(X) &= \sum_{i∈[0,n)} p_i ⋅ L_i(x) &\quad P'(X) &= \sum_{i∈[0,n)} p_i ⋅ L_i'(x) \end{aligned} $$

so to compute $P'(X)$ in the evaluation basis we need to know $L_i'(x_j)$. Start with computing the derivate

$$ L_i'(X) = \sum_{x∈\mathcal S \setminus \set{x_i}} \frac{L_i(X)}{X - x} $$

$$ L_i'(X) = \frac{\Z_{\vec x \setminus \set{x_i}}'(X)}{\Z_{\vec x \setminus \set{x_i}}(x_i)} $$

$$ \begin{aligned} L_i'(X) &= l_i⋅ \p{\frac{Z_{\vec x}'(X)}{X - x_i} - \frac{Z_{\vec x}(X)}{\p{X - x_i}^2}} \\ &= l_i⋅ \p{ \frac{\sum_{x∈\mathcal S} \frac{\Z_{\mathcal S}(X)}{X - x}}{X - x_i} - \frac{Z_{\vec x}(X)}{\p{X - x_i}^2}} \\ &= l_i⋅ \p{ \sum_{x∈\mathcal S} \frac{\Z_{\mathcal S}(X)}{\p{X - x}⋅\p{X - x_i}} - \frac{Z_{\vec x}(X)}{\p{X - x_i}^2} } \\ &= l_i⋅\sum_{x∈\mathcal S \setminus \set{x_i}} \frac{\Z_{\mathcal S}(X)}{\p{X - x}⋅\p{X - x_i}} \\ &= l_i ⋅ \frac{\Z_{\mathcal S}(X)}{X - x_i}⋅\sum_{x∈\mathcal S \setminus \set{x_i}} \frac{1}{X - x} \\ &= l_i ⋅ \frac{\Z_{\mathcal S}(X)}{X - x_i}⋅\sum_{x∈\mathcal S \setminus \set{x_i}} \frac{1}{X - x} \\ &= L_i(X) ⋅ \sum_{x∈\mathcal S \setminus \set{x_i}} \frac{1}{X - x} \\ &= \sum_{x∈\mathcal S \setminus \set{x_i}} \frac{L_i(X)}{X - x} \\ \end{aligned} $$

The on-diagonal elements $L_i'(x_i)$ are

$$ L_i'(x_i) = \frac{\Z_{\vec x \setminus \set{x_i}}'(x_i)}{\Z_{\vec x \setminus \set{x_i}}(x_i)} = \sum_{x ∈ \vec x \setminus \set{x_i}} \frac{1}{x_j - x} $$

The off-diagonal elements $L_i'(x_j)$ are

$$ L_i'(x_j) = \frac{\Z_{\vec x \setminus \set{x_i}}'(x_j)}{\Z_{\vec x \setminus \set{x_i}}(x_i)} = \frac{\Z_{\vec x \setminus \set{x_i,x_j}}(x_j)}{\Z_{\vec x \setminus \set{x_i}}(x_i)} = \frac{1}{x_j - x_i}⋅ \frac{\Z_{\vec x \setminus \set{x_j}}(x_j)}{\Z_{\vec x \setminus \set{x_i}}(x_i)} = \frac{1}{x_j - x_i}⋅ \frac{\Z_{\vec x}'(x_j)}{\Z_{\vec x}'(x_i)} $$

Todo. What is the rank of this matrix?

Roots of unity

On-diagonal

$$ L_i'(\ω^i) = \frac{\Z_{Ω_n \setminus \set{\ω^i}}'(\ω^i)}{\Z_{Ω_n \setminus \set{\ω^i}}(\ω^i)} = \frac{\Z_{Ω_n \setminus \set{\ω^i}}'(\ω^i)}{\Z_{Ω_n}'(\ω^i)} = \frac{? }{n⋅\ω^{-i}} $$

$$ \Z_{\mathcal A \setminus \mathcal B}'(X) = \D{X} \p{\frac{\Z_{\mathcal A}(X)}{\Z_{\mathcal A ∩ \mathcal B}(X)}} = \frac{\Z_{\mathcal A}'(X)⋅\Z_{\mathcal A ∩ \mathcal B}(X) - \Z_{\mathcal A}(X)⋅\Z_{\mathcal A ∩ \mathcal B}'(X)}{\p{\Z_{\mathcal A ∩ \mathcal B}(X)}^2} $$

$$ \begin{aligned} \Z_{Ω_n \setminus \set{\ω^i}}'(X) &= \frac{\Z_{Ω_n}'(X)⋅\Z_{\set{\ω^i}}(X) - \Z_{Ω_n}(X)⋅\Z_{\set{\ω^i}}'(X)}{\p{\Z_{\set{\ω^i}}(X)}^2} \\ &= \frac{\p{n⋅X^{n -1}}⋅\p{X - \ω^i} - \p{X^n-1}}{\p{X - \ω^i}^2} \\ &= \frac{n⋅X^{n -1}}{X - \ω^i}

Off-diagonal

$$ L_i'(\ω^j) = \frac{1}{\ω^j - \ω^i}⋅ \frac{\Z_{Ω_n}'(\ω^j)}{\Z_{Ω_n}'(\ω^i)} = \frac{\ω^{i -j}}{\ω^j - \ω^i} $$

This is a Cauchy-like matrix

to do. Test these results numerically.

https://www.ams.org/journals/mcom/1988-50-181/S0025-5718-1988-0917825-9/S0025-5718-1988-0917825-9.pdf

https://link.springer.com/article/10.1007/s11075-022-01391-y

https://arxiv.org/pdf/1506.02285.pdf

CRT Basis

$$ E_i(X) = \delim[{\frac{m_1(X)}{M(X)}}]_{m_1}⋅\frac{M(X)}{m_1(X)} $$

NTT Solution

Pick $\vec x$ roots of unity and use $\NTT_n$ to convert to monomial form. Convert back to a coset $\vec y$ using $\NTT_n$. Square all values $2⋅n⋅\Mul_{\F}$, convert to monomial form $\NTT_{2⋅n}$. We now have coefficients of $P^2(X)$.

Basis transformations

Can every polynomial basis be written as a combination of point and derivative?

The conversion between monomial and roots-of-unity is the $\NTT$.

Multiplication by a constant polynomial

Division by a constant polynomial

Modulo operations

Derivatives

The formal derivative is a linear operator.

$\D{X} P(X)$

$$ \D{X}\p{a_0 + a_1 ⋅X + a_2 ⋅ X^2 + ⋯} = a_1 + 2 ⋅ a_2 ⋅ X + 3⋅a_3⋅X^3 ⋯ $$

Given a basis, linear operators can be expressed as a matrix. The monomial basis almost diagonalizes the derivative operator:

$$ \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \\ \end{bmatrix} $$

Q: Which basis diagonalizes it? Is there always such a basis?

https://en.wikipedia.org/wiki/Multiplier_(Fourier_analysis)#On_the_unit_circle

Multiplications

$P(c ⋅ X)$

$$ a_0 + a_1⋅(c⋅ X) + a_2 ⋅ (c ⋅ X)^2 + ⋯ = a_0 + a_1 ⋅ c ⋅ X + a_2 ⋅ c^2 ⋅ X^2 + ⋯ $$

$$ \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & c & 0 & 0 \\ 0 & 0 & c^2 & 0 \\ 0 & 0 & 0 & c^3 \\ \end{bmatrix} $$

Translations

$P(X+δ)$

$$ a_0 + a_1⋅(X + δ) + a_2 ⋅ (X + δ)^2 + ⋯ = \p{a_0 + a_1⋅δ + a_2 ⋅δ^2 + ⋯} + \p{a_1 + 2⋅a_2⋅δ + ⋯}⋅X + \p{a_2 + ⋯} ⋅ X^2 + ⋯ $$

$$ (X + δ)^2 = X^2 + 2⋅δ⋅X + δ^2 $$

Chinese Remainder Theorem

$A.B mod X-1$

https://en.wikipedia.org/wiki/Companion_matrix#Diagonalizability

HSS Matrices: https://mipals.github.io/pubs/matrix/hss/

Coding Theory

Reed-Solomon codes. Linear block codes that have maximal separation.

Vandermonde matrix $V$:

$$ \begin{bmatrix} I & V \end{bmatrix} $$

Cauchy matrix $C$

$$ \begin{bmatrix} I & C \end{bmatrix} $$

https://web.eecs.utk.edu/~jplank/plank/papers/CS-05-569.pdf

List decoding

Linear Algebra

A vector space $\F^n$ and a matrix space $\F^{n×m}$.

Linear maps $\F^n ⇄ \F^{n×1}$, $\F^n ⇄ \F^{1×n}$, $\F^n → \F^{n×1}$. Given $\vec a ∈ \F^n$.

row-vector, column-vector, diagonal matrix.

$$ \begin{aligned} \begin{bmatrix} a_0 \\ a_1 \\ ⋮ \\ a_{n-1} \end{bmatrix}, \begin{bmatrix} a_0 & a_1 & ⋯ & a_{n-1} \end{bmatrix}, \begin{bmatrix} a_0 & 0 & ⋯ & 0 \\ 0 & a_1 & ⋯ & 0 \\ ⋮ & ⋮ & ⋱ & ⋮ \\ 0 & 0 & ⋯ & a_{n-1} \end{bmatrix} \end{aligned} $$

row-major order, column-mjor order, z-order

https://en.wikipedia.org/wiki/Row-_and_column-major_order

$\F^{n⋅m} ⇄ \F^{n×m}$

$$ \begin{aligned} \begin{bmatrix} a_0 & a_1 & ⋯ & a_{n-1} \\ a_n & a_{n+1} & ⋯ & a_{2⋅n - 1} \\ ⋮ & ⋮ & ⋱ & ⋮ \\ a_{(m-1)⋅n} & a_{(m-1)⋅n + 1} & ⋯ & a_{n⋅m-1} \end{bmatrix}, \begin{bmatrix} a_0 & a_n & ⋯ & a_{(m-1)⋅n-1} \\ a_1 & a_{n+1} & ⋯ & a_{(m-1)⋅n - 1} \\ ⋮ & ⋮ & ⋱ & ⋮ \\ a_{n-1} & a_{2⋅n - 1} & ⋯ & a_{n⋅m-1} \end{bmatrix} \end{aligned} $$

https://en.wikipedia.org/wiki/Z-order_curve

CRT order. As in Good-Thomas FFT.

$$ n → (\Mod{n}_{m_1},\Mod{n}_{m_2}) $$

Permutation Matrix

Rader's permutation https://en.wikipedia.org/wiki/Rader%27s_FFT_algorithm

The multiplicative group is cyclic

$$ \F_p^× ≅ C_{p-1} $$

Remco Bloemen
Math & Engineering
https://2π.com