Innovation diffusion models
% Remco Bloemen % 2015-08-26
\newcommand{\operator}[3]{\operatorname*{{#1}}\nolimits_{{#2}}^{{#3}};} \newcommand{\∂}[2][]{\operator{∂}{#2}{#1}} \newcommand{\δ}[2][]{\operator{δ}{#2}{#1}} \newcommand{\D}[2][]{\operator{D}{#2}{#1}} \renewcommand{\d}[2][]{\operator{d}{#2}{#1}} \newcommand{\π}{\mathrm π} \newcommand{\e}{\mathrm e} \renewcommand{\i}{\mathrm i} \newcommand{\fd}[2]{\frac{\d #1}{\d #2}}
To simplify matters I will take out any time offset and market size factor, they can be reintroduced by setting:
A'(t) = M_0 + M A(t - t_0)
Super diffusion model
\fd A t = \left( p + q A \right) (1 - A^ν)
Bass Diffusion Model
\fd A t = \left( p + q A \right) (1 - A)
A(t) = \frac{1 - \e^{-(p + q)t}}{1 + \frac qp \e^{-(p+q)t} }
Generalised logistic function
\fd A t = α ν \left( 1 - \left( \frac A K \right)^{\frac 1 ν} \right) A
A(t) = \frac{1}{(Q + \e^{-B(t-M)} )^{\frac 1 ν}}
Gompertz model
Take the generalised logistic function
\fd A t = α ν \left( 1 - \left( \frac A K \right)^{\frac 1 ν} \right) A
and apply the limit ν → ∞:
\lim_{v → ∞} ν \left( 1 - x^{\frac 1 ν} \right) = -\log x
then
\fd A t = - α \log \left( \frac A K \right) A
A(t) = \e^{-b \e^{-c t}}
b = -log(A(0))
\fd A t = c \log \left( \frac {X(b,c)} A \right) A
Simple logistic function
Take the GLF and set ν = 0:
\fd A t = A · (1 - A)
A(t) = \frac{M}{1 + \e^{-x}}