Noether's Theorem

% Remco Bloemen % 2015-08-26

\renewcommand{\g}[1]{\left({#1}\right)} \renewcommand{\vec}[1]{\mathbf #1} \newcommand{\bindingOperator}[3]{\mathrm{#1}^{#3}{#2}} \newcommand{\∫}[2][]{\bindingOperator{\int}{#1}{#2}} \newcommand{\operator}[3]{\operatorname*{#1}\nolimits{#2}^{#3};} \newcommand{\∂}[2][]{\operator{∂}{#2}{#1}} \newcommand{\δ}[2][]{\operator{δ}{#2}{#1}} \newcommand{\D}[2][]{\operator{D}{#2}{#1}} \renewcommand{\d}[2][]{\operator{d}{#2}{#1}}

To every differentiable symmetry generated by local actions, there corresponds a conserved current.

Discrete Langrangian Mechanics

In Langrangian mechanics a system is described by a set of generalized parameters $\vec x(t)$, a time depended vector in the state space of the system.

The physics of the system is contained in a Lagrangian function:

$$ L(t, \vec x, \vec v): ℝ × \mathrm{T}\mkern2mu X → ℝ $$

where $\vec x ∈ X$ and $\vec v ∈ \mathrm{T}_{\vec x} X$.

Hamilton’s principle than states that:

$$ δ \vec x(t) \∫ t L(\vec x(t), (\d t {\vec x}) (t), t) = 0 $$

this can be restated as the Euler-Lagrange equations:

$$ \d t \∂ {v_k} L = \∂{x_k} L $$

Noether’s theorem

Given a symmetry $T_r$, $\vec Q_r$, the quantity

$$ \g{ \∂ {\vec v} L · \vec v - L } T_r - \∂ {\vec v} L · \vec Q_r $$

is conserved.

In reality

The standard model

Symmetry Generators Conserved quantity


Time shift 1 Energy Translation 3 Momentum Rotation 3 Angular Momentum Boosts 3 ?? Gauge 6 Color charge, Weak isospin, Electric charge, Weak hypercharge Phase 4 Baryon, electron, muon and tau numbers

General Relativity

The Einstein-Hilbert Langrangian:

$$ L = \frac{c^4}{16 π G} R_j^j \sqrt{-\det g_{μν}} $$

Killing vector fields are symmetries of the metric tensor.

Remco Bloemen
Math & Engineering
https://2π.com